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. e 1. Data on resistivity for lithium, sodium,
assium, and copper.
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~wlusion principle, however, this is not
~sible, since each state of kinetic
;-1grg_\' can be occupied by only two
Jectrons (of opposite spin). Conse-
quently the electrons “fill up” all the
awest kiretic-energy levels available to
hem until all the electrons are accom-
modated.  Therefore, at the absolute
sero of temperature all the lower
jinetic-energy levels are filled up to a
certain value E,, and above this the
levels are all empty. The value of E,
i 4 typical monovalent metal, if ex-
pressed as an equivalent temperature,
1« around 50,000°K—in other words,
this is the temperature to which a clas-
weal clectron gas would have to be
leated to have a similar kinetic energy.
It is evident from this that even at
room temperature the additional kinetic
cnergy of the electrons that is due to
thermal motion is tiny as compared to
their zero-point energy, so that for some
purposes we can treat the electrons as
being effectively at 0°K. The maxi-
mum encrgy E, of the electrons at 0°K
(or more generally, their chemical po-
tential) is referred to as the Fermi
coergy of the electrons, E,, and this
quantity  varies with volume; in the
vmplest approximation of quasi-free
clectrons, E, o« V72/3,

How are the clectron velocities dis-
tributed over the various directions in
space? In an ideal gas the distribution
would be isotropic—that is, the average
velocity would be the same in all direc-
tons. In discussing electrons in metals
il is more convenient to work, not
directly with the electron velocity or
momentum, but (since the properties
o clectrons are governed by wave
mechanics) with the electron’s wave
number k, which in the case of com-
Pletely free electrons would be related
W the momentum by the De Broglie
ilitionship hk = p. The energy of
vich electrons (of mass m) is given by
L= I*k*/2m, so if we plot the com-
ponents of k, k,, k,, and k. along car-
fovn axes (k-space), the surfaces of
sUmstant energy  would  therefore be
spheres (corresponding to an isotropic
“atribution of velocities). The surface
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corresponding to the Fermi encrgy of
the electrons is called the Fermi sur-
face. If the electrons are not free but
are influenced by the potential field of
the lattice, then the Fermi surface will
no longer be a sphere but will be more
or less distorted, depending on the
influence of the lattice potential; the
symmetry of the Fermi surface taken
as a whole is closely related to that of
the crystal. The importance of the
Fermi surface arises from the fact that
only electrons close to the Fermi sur-
face have unoccupied electronic levels
in their neighborhood—in other words,
these are the only electrons which can
be thermally excited (at normal tem-
peratures) or scattered by lattice waves
or impurities.

The wavelike properties of electrons
imply that, like x-rays, electrons in a
crystal may suffer Bragg reflections.
Thus, if an electron propagating in a
certain direction in the crystal has just
the right wavelength to satisfy the
Bragg condition, it will be reflected by
the appropriate lattice planes. Suppose
that we choose some particular direc-
tion in the crystal and then find the

minimum value of & which an electron’

propagating in that direction must have
to satisfy the Bragg relation; suppose,
further, that we do this for all possible
directions. Then if we draw these
k-vectors from the origin in k-space,
it turns out that their ends lie on a
polyhedron about the origin, this poly-
hedron having the symmetry of the
lattice. This polyhedron is referred to
as the first Brillouin zone of that lattice,
and it is relevant to any kind of wave
that can propagate through the lattice
(in particular lattice waves and eclec-
trons). If for the electrons we draw
surfaces of constant energy in k-space,
‘all those surfaces lying ~within the
Brillouin zone are continuous, whereas
those surfaces which intersect the zone
boundary will, in general, suffer a dis-
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Fig. 5. The logarithmic volume coefficient
of the ideal resistivity of lithium, sodium,
potassium, and copper, shown as a func-
tion of the logarithmic temperature co-
efficient.

continuity; there is in fact a forbidden
energy region at the zone boundaries
such that electrons with energies lying
within this range cannot propagate in
the lattice.

The volume of the zone in k-space
is such that if the crystal has N atoms
per unit volume (/5), then the zone
can accommodate N electrons of a
given spin, uniformly distributed
throughout the zone. Since electrons
can exist in two independent spin states
of the same wave vector, the zone can
contain just 2N electron states.

This latter conclusion has the follow-
ing important consequence. In a mono-
valent metal, which has just one con-
duction electron per atom, the Fermi
surface which encloses all the electron
states in k-space must therefore com-
prise a volume equal to half that of the
Brillouin zone. This in turn means that
if in cubic monovalent metals the Fermi
surface is nearly spherical it can be
entirely contained within the first zone
without anywhere touching it. This

Table 2. Data on resistivity for the monovalent metals.

dinp dln 3 Mo,V
Metal FIT‘? 2y -‘3::—5 ((Tn;,) =x Z:: I:,/x 0, 0. 0r/0, 0—7.&

at 0°C v
Li —-0.49 1.8 —-2.3 6.7 =0.3 369F 3851 1.04 72
Na 4.6 2.6. 2.0 -2.7 -0.7 152% 2051 1.35 2.0
K 5.7 2.6 3.1 —-3.8 —-0.8 90 116 1.29 2.0
Rb 3.7 3.0 0.7 -2.3 —0.3 55 58 1.06 3.1
Cs ) 3.2 -0.2 40 45 1.13 4.4
Cu 3.0 4.0 -1.0 +1.6 —0.6 344 333 0.97 8.4
Ag 3.9 4.8 —-0.9 +1.1 —-0.8 225 223 0.99 6.3
Au 3.5 6.2 -=0.7 +1.5 —-0.5 165 175 1.06 13.5

* The value for cesium was taken from MacDonald (Z). The other values of #r were taken from
(13) and (9) for the alkali metals and from (27) for the noble metals.

1 Two-phase mixture,

1 Estimated value for the body-centered cubic phase.
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